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SUMMARY

Compact �nite di�erence methods feature high-order accuracy with smaller stencils and easier applica-
tion of boundary conditions, and have been employed as an alternative to spectral methods in direct
numerical simulation and large eddy simulation of turbulence. The underpinning idea of the method is
to cancel lower-order errors by treating spatial Taylor expansions implicitly. Recently, some attention
has been paid to conservative compact �nite volume methods on staggered grid, but there is a concern
about the order of accuracy after replacing cell surface integrals by average values calculated at centres
of cell surfaces. Here we introduce a high-order compact �nite di�erence method on staggered grid,
without taking integration by parts. The method is implemented and assessed for an incompressible
shear-driven cavity �ow at Re=103, a temporally periodic �ow at Re=104, and a spatially periodic
�ow at Re=104. The results demonstrate the success of the method. Copyright ? 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Finite di�erence methods, invented far earlier than �nite element methods, boundary ele-
ment methods, spectral methods, and discontinuous spectral element methods [1], remain as
a competitive class of direct domain discretization methods for a wide range of applications.
With global mappings, �nite di�erence methods can be used to tackle problems with com-
plex geometry, such as free-surface �ows [2, 3]. Generally, the approach of local geometric
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mappings in �nite element and spectral element methods perform more �exibly and e�ciently
in problems with complex geometry, especially in 3-D free-surface �ows and �uid–structure
interactions. However, for a problem with simple geometry a �nite di�erence method per-
forms appreciably faster than a �nite element method, because the latter ignores to utilize the
simplicity of the geometry. Since �ows with simple geometry not only exist in nature and
industry but also serve as the �rst step to test mathematical models or to understand underlying
physics, research on design and analysis of �nite di�erence algorithms remains active. There
are at least two major topics, conservative schemes (such as Godunov-based schemes) and
high-order schemes. In this paper, we focus on high-order compact �nite di�erence methods.
The idea of compact �nite di�erence is rather simple. For example, in the classical

explicit-in-space �nite di�erence methods, a 3-point interpolation for a second-order deriva-
tive produces an approximation with a second-order truncation error. But if the second-order
derivative is interpolated implicitly in space, a higher-order approximation can be reached
with involvement of the same three points. Here we illustrate through an example how this
can be achieved. Figure 1 shows a distribution of three discrete unknowns and their second
derivatives to be interpolated. Expanding all quantities at the same selected point, which in
this example is selected at the position of ’i and ’′′

i , we have
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i , and ’(5)i from the above four equations creates the ith interpolation
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With non-periodic boundary conditions, a closed tridiagonal system can be formed after similar
treatments at other nodes on the same line and special treatments near boundaries. By solving
this small set of equations one can implicitly interpolate quantities such as second derivatives
with discrete unknowns.

Figure 1. Collocated grid used in fourth-order interpolation for second-order derivatives. In all
similar �gures, quantities to be interpolated are placed above the line and quantities used to

interpolate are placed below the line.
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The idea of compact scheme was �rst introduced by Kreiss [4, 5] and implemented by
Hirsh [5], then popularized by Lele [6]. E�orts in promotion of compact �nite di�erence
schemes on collocated grids are also witnessed in References [7–16] (in chronological order).
Compact �nite di�erence methods feature high-order accuracy with smaller stencils and easier
application of boundary conditions, and have been employed as an alternative to spectral
methods in direct numerical simulation and large eddy simulation of turbulence [6, 11]. More
comments on pros and cons of compact schemes are postponed to Section 4.
The robustness of staggered grid for second-order �nite di�erence methods prompts a similar

treatment for compact �nite di�erence methods. Nagarajan et al. [17] investigated compact
schemes on staggered grid for compressible �ows and applied the method to large eddy
simulation of turbulence. Piller and Stalio [18] developed compact schemes for incompressible
�ows. Both papers reported preference of staggered grids over collocated grids. However,
there is a concern about the order of accuracy of these two methods on staggered grids.
Both methods take a locally conservative approach. First, through integration by parts several
terms of the governing equations in a cell are transferred to cell surface integrals. This step
introduces no approximation errors. Not only because this is a pure mathematical operation,
but also because the di�erential form of the governing equations is actually a consequence of
taking integration by parts on the more original integral form of the conservation equations.
Next, cell surface integrals are replaced by average values sitting at centres of surfaces. This
step, as we know, introduces second-order approximation errors throughout the computational
domain. Finally, all quantities which are not de�ned as discrete unknowns, such as �rst
derivatives, are interpolated by discrete unknowns with high-order accuracy. Nevertheless,
due to the second step the high-order accuracy of whole method becomes questionable.
This paper is not intended to address how to reduce approximation errors of cell surface

integrals in cell/element-based conservative methods. Instead, in the following three sections
we introduce a point/node-based non-locally-conservative high-order compact �nite di�erence
method on the same staggered grid. It is worthwhile to mention that our treatment of boundary
conditions will di�er signi�cantly from those in References [17, 18].

2. INTERPOLATIONS

In this section all interpolations are listed for later reference, together with treatment of bound-
aries. Equation (5), which will also be used, is not repeated here. The factors in choosing
speci�c arrangement of points include order of truncation errors, more direct involvement of
boundary conditions, and formation of tridiagonal system, which can be solved e�ciently by
a direct Gauss elimination (Thomas algorithm). We detail the �rst case of interpolation of
zero-order derivatives on staggered grid, where both the ideas and notations are introduced.
Although the compact �nite di�erence method to be introduced in this paper is equally
applicable to compressible �ows, for simplicity we illustrate the idea via incompressible �ows.

2.1. Interpolations on staggered grid

2.1.1. Zero-order derivatives. Figure 2 shows the staggered grid for interpolation of zero-
order derivatives (function value itself). Quantities below the line,  ′

i s in this case, are discrete
unknowns while quantities above the line, ’′

is in this case, are quantities to be interpolated.
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Figure 2. Staggered grid used in sixth-order interpolation for zero-order derivatives.

Instead of non-integers such as i+ 1
2 used in References [17, 18], we use integer indices since

they are being used in actual computer programming. In this case of interpolation, boundary
conditions are not required but the �rst interpolation equation, characterized by ’0 and indexed
by i=0, di�ers from interior interpolation equations. Following the same idea illustrated in
Section 1, selecting a point and expanding all quantities at the same point we have
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Cancelling three unwanted quantities  ′
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1 from the above four equations produces
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Similarly, by expanding ’i−1, ’i+1,  i−1,  i,  i+1, and  i+2 at location i, one obtains six
equations and �ve undesirable quantities of ’′
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The boundary treatment on the right end always can be done by simply replacing h by −h,
provided care is taken in the bookkeeping of indices.

2.1.2. First-order derivatives. Two cases of interpolation of �rst-order derivatives on stag-
gered grid will be used and distributions of points are illustrated in Figures 3 and 4. The �rst
case (Figure 3) needs no boundary conditions but the �rst interpolation equation di�ers from
those for the interior
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Figure 3. The �rst type of staggered grid used in sixth-order interpolation for �rst-order derivatives.

Figure 4. The second type of staggered grid used in sixth-order interpolation for �rst-order derivatives.

Figure 5. Staggered grid used in interpolation for second-order derivatives near boundaries.

The second case (Figure 4), which needs boundary conditions, di�ers from the �rst case
mainly in indexing. The �rst interpolation equation becomes
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where the subscript b indicates the boundary value. For the interior, except for i=1, we have
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For the case of i=1, simply replace the  i−2 in Equation (15) by  b.

2.1.3. Second-order derivatives. In the point/node-based compact �nite di�erence method
presented in this paper, for the interior region second-order derivatives are interpolated on
collocated grid only. However, in the vicinity of boundaries the interpolations of second-
order derivatives both on collocated grid and on staggered grid will be useful. Interpolations
(Figure 5) on staggered grid are
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Figure 6. Collocated grid used in sixth-order interpolation for �rst-order derivatives.

Figure 7. Collocated grid used in sixth-order interpolation for second-order derivatives.

Figure 8. Collocated grid used in interpolation for second-order derivatives near boundaries.

2.2. Interpolations on collocated grid

2.2.1. First-order derivatives. Figure 6 shows the distribution of collocated grid points for
interpolation of �rst-order derivatives. For i=0, the interpolation equation is
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For interior region, the interpolation equation is
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2.2.2. Second-order derivatives. Figure 7 shows the collocated grid for interpolation of
second-order derivatives, and the corresponding interpolation equations are
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2.2.3. Second-order derivatives for the pressure. A pressure Poisson equation, to be explained
in the next section, will be solved in a pseudo time marching manner for the incompressible
Navier–Stokes �ows. Figure 8 shows the collocated grid for interpolation of second-order
derivative for the pressure near boundaries only. By expanding ’′′

0 , ’
′′
1 , ’0, ’1, and ’2 at the
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boundary and utilizing @’=@x=0, one obtains
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(’2 − ’1) + O(h3) (22)

3. FORMULATION AND IMPLEMENTATION

3.1. Formulation

The non-dimensional governing equations for incompressible Navier–Stokes �ows in conser-
vative form read

@tui + @j(ujui)= − @ip+
1
Re

@j@jui + fi (23)

@juj=0 (24)

where Re is the Reynolds number, @t denotes partial derivative with respect to time, and
@i and @j denote partial derivatives with respect to space. Instead of the recently developed
exact factorization technique [19], a classical splitting method is chosen to tackle Equations
(23) and (24). This is because the nature of point/node-based compact �nite di�erence makes
matrices less convenient. For the same reason, explicit time schemes are preferred. Other-
wise, as adopted in Reference [18], one has to solve a much larger linear system compared
with classical explicit-in-space schemes. Most �ows are rather convection-dominated. In such
�ows often it is not the di�usion term but the nonlinear convection term that imposes time
step restriction. In this sense, popular semi-implicit time schemes do not o�er a signi�cant
advantage over explicit schemes. Also, semi-implicit schemes are indeed more robust but at
the same time more deceptive. A large time step may not incur a blowup of the solution
in boundary layers, but the time accuracy of the solution may be lost. With a second-order
Adams–Bashforth scheme, the semi-discrete form of Equations (23) and (24) becomes
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un+1
i = u∗

i −�t@ip (27)

where the pressure Poisson equation (26) is solved by a pseudo-time marching procedure.
The superscript m in Equation (26) denotes the pseudo time level and the pseudo time step
size �� can be chosen to guarantee the convergence of pseudo time marching and to retain
a reasonable e�ciency.

3.2. Implementation

Although the major advantage of staggered grid resides in its ease for imposing local
conservation, one can use this grid in point/node-based non-locally-conservative methods.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:867–881



874 K. K. Q. ZHANG ET AL.

Figure 9. Staggered grid for compact �nite di�erence in shear-driven cavity �ow and periodic
cavity �ow: u, u∗, @(uu)=@x, @(vu)=@y, @2u=@x2, @2u=@y2, and @p=@x are de�ned at a-type points; v, v∗,
@(uv)=@x, @(vv)=@y, @2v=@x2, @2v=@y2, and @p=@y are de�ned at b-type points; p, @2p=@x2, @2p=@y2, and

@u∗=@x, @v∗=@y are de�ned at c-type points; d-type points are for temporary quantities, us and vs.

For simplicity, the 2-D shear-driven cavity �ow at Re=103 is selected to illustrate the compact
scheme. Figure 9 shows the staggered grid and locations where various quantities are de�ned.
Suppose p, un, vn, un−1, and vn−1 are known, a time marching process is comprised of the
following steps:

1. Update u∗ and v∗ according to Equation (25).
2. Interpolate @u∗=@x and @v∗=@y using Equations (14) and (15). According to Reference
[19], on solid boundaries u∗=0 and v∗=0.

3. Solve p using the pseudo time marching, Equation (26). @2p=@x2 and @2p=@y2 are
interpolated according to Equations (5), (21), and (22). According to Reference [19],
on solid boundaries @p=@n=0.

4. Interpolate @p=@x and @p=@y according to Equations (12) and (13).
5. Update un+1 and vn+1 according to Equation (27).
6. Bookkeep all time dependent data. In particular, update un and vn.
7. Interpolate temporary quantities us and vs (illustrated in Figure 9) from un and vn,
according to Equations (10) and (11).

8. Interpolate @(vu)n=@y and @(uv)n=@x from vsus, according to Equations (14) and (15).
9. Interpolate @(uu)n=@x and @(vv)n=@y according to Equations (18) and (19).
10. Interpolate @2un=@x2 and @2vn=@y2 according to Equations (20) and (21).
11. Near boundaries, use Equations (16) and (17) to interpolate @2un=@y2 and @2vn=@x2;

in the interior region use Equation (21). For the cavity �ow, the only non-vanishing
boundary condition comes into play through the term @2un=@y2.

12. Go back to step 1.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:867–881
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Figure 10. (a) Con�guration and boundary conditions for shear-driven cavity; and (b) con�guration and
boundary conditions for temporally periodic �ow.

4. NUMERICAL RESULTS

In this section we use three numerical examples to demonstrate the success of the method.
The �rst example is the classical benchmark problem of shear-driven cavity �ow, where one
wall is moving. In the second example all walls are stationary, and the �ow is driven by a
temporally periodic body force; the exact solution can be found for this example. In the third
example, walls are replaced by spatially periodic boundary conditions and the �ow is driven
by a developing body force. These three examples are also useful to evaluate the e�ect of the
walls on the overall order of accuracy based on truncation errors. This is important since the
order of accuracy of discretization used near the walls is lower than that used for the interior
nodes.

4.1. Shear-driven cavity

First, the classical temporally developing shear-driven cavity �ow (Figure 10(a)) at Re=103
is calculated with a time step �t=10−4 to ensure the time accuracy. Figure 11(a) shows
velocity pro�les on three di�erent grids, where the coarse grid of 32× 32 gives rather rough
results. However, as the mesh size decreases to half, the results quickly converge so that a
further decrease of the mesh size makes little di�erence. This is the feature of high-order
methods. In Figure 11(b), a comparison between velocity pro�le based on the current method
and that based on multigrid second-order �nite di�erence method with vorticity-streamfunction
formulation [20] is presented, and an excellent agreement is observed. Figure 11(c) shows
the pressure contour for the cavity �ow at Re=103. From the �gure it can be seen that the
top right corner has high pressure and high pressure gradient. In contrast, the low pressure
area resides in the centre part of the �ow.
The method presented in this paper has a formal sixth-order accuracy in the region away

from boundaries, which is based on the truncation error. However, truncation errors become
negligible only under the condition that the grid size is small enough, which is hard to realize
in practice. The use of lower-order boundary condition approximations, such as those through
Equations (12) and (14), also pollute the accuracy.
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Figure 11. Results for the shear-driven cavity �ow with the compact �nite di�erence method: (a)
horizontal velocity pro�les (on vertical midplane) for grid independence study; (b) comparison of
horizontal velocity pro�les (on vertical midplane) between the compact �nite di�erence method and

Ghia et al. [20]; and (c) pressure contour at Re=103.

Due to the staggered grid, the calculated horizontal velocity components on the vertical
mid-plane never exactly stay at the same y positions for three grid sizes of 32× 32, 64× 64,
and 128×128. To make a numerical comparison more convenient, raw data is post processed
as follows. Using the interpolations (10) and (11) on staggered grid, raw data on staggered
positions (a-type positions in Figure 9) are transferred to data on collocated positions (d-type
positions in Figure 9) along the vertical mid-plane. Resulting data for the 32 × 32 grid is
regarded as the base, and excessive data for the 64 × 64 and 128 × 128 grids are discarded.
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Now we have three sets of post processed data on the same y positions, and each set contains
31 data points for di�erent y at x=0:5. Let the post processed data on the 32 × 32 grid
be denoted by u32, similarly for data on other two grids. The ratio of root mean square,√

1
31

∑
31(u32 − u64)2=

√
1
31

∑
31(u64 − u128)2, is 14:7, suggesting an approximately fourth-order

convergence rate.

4.2. Temporally periodic �ow

Next, we consider a transient Navier–Stokes �ow inside a unity square (Figure 10(b)) with
all boundaries �xed, but under the in�uence of a supplied body force. The time-periodic exact
solution is prescribed similar to [21]

u(x; y; t) =− sin t sin2 �x sin �y cos�y
v(x; y; t) = sin t sin �x cos�x sin2 �y

p(x; y; t) = sin t sin �x cos�y

where both velocities and pressure vanish at t=0 and velocities vanish on four boundaries
x=0, x=1, y=0, and y=1. The appropriate body force functions can be derived by sub-
stituting exact solutions into the momentum equation (23)

fx =− cos t sin2 �x sin �y cos�y + � sin2 t sin3 �x cos�x sin2 �y

+� sin t cos�x cos�y − �2

Re
sin t(6 sin2 �x − 2 cos2 �x) sin �y cos�y

fy = cos t sin �x cos�x sin
2 �y + � sin2 t sin2 �x sin3 �y cos�y

−� sin t sin �x sin �y +
�2

Re
sin t sin �x cos�x(6 sin2 �y − 2 cos2 �y)

The same grid (Figure 9) is used for this �ow. Components of body forces stay at the same
positions as velocity components. A comparison between the numerical solution and the exact
solution at Re=104 is presented in Figure 12, which shows an excellent agreement.
The order of accuracy of the numerical method is also studied for the temporally periodic

�ow. Table I shows root mean square (r.m.s) of the di�erences between numerical and exact
solutions on two sets of meshes. The ratio of two r.m.s. values is 31.2, which displays a
�fth-order accuracy.
In comparison to classical high-order di�erence schemes, compact schemes reach higher

order of accuracy with smaller stencils, consequently boundary conditions are easier to
impose. Compared with a second-order �nite di�erence method, the compact �nite di�er-
ence method involves more operations during each time step, if the same grid is used. Our
numerical experiments show that with a �ner grid, a second-order conservative �nite di�erence
method (identical to �nite volume method due to the simple geometry) displays comparable
e�ciency as the formally six-order compact �nite di�erence method. However, to reach the
same accuracy, compact schemes consume less memory than second-order explicit-in-space
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Figure 12. Comparison between the numerical solution and the exact solution
for the temporally periodic �ow.

Table I. Order of accuracy study for temporally periodic �ow at Re=104 and at
non-dimensional time t=0:8, where k represents number of grid points.

Grid 8× 8 16× 16

r:m:s:≡
√

1
k

∑
k(unumerical − uexact)2 0.0079152 0.0002536

di�erence schemes. More importantly, high-order compact schemes resolve short wavelengths
better [6], and this is the reason that compact �nite di�erence has been applied to direct
numerical simulation of turbulence [11]. However, as mentioned in Reference [18], a �ltering
technique is required for higher Re �ows.

4.3. Spatially periodic �ow

Finally, we consider a spatially periodic �ow, a benchmark problem used by Chorin [22].
Figure 13 shows the mesh for the �ow. Periodic boundary conditions are applied on all four
boundaries, which are simply bookkeeping of indices. Initially at rest, the �ow is driven by
a body force f =0:1(1− e−t)[sin(2�y)î+sin(2�x)ĵ]. Due to the spatial periodicity, it is more
convenient to de�ne additional unknown velocity components on the top boundary and on the
right boundary. In contrast to the previous two numerical examples in this paper,
implicity in space (as discussed in Section 1) does not result in a tridiagonal system. The
resulting sparse system is solved by a Gauss–Seidel linear solver with compressed storage.
Figure 14 shows the results at non-dimensional time t=4:0. The vector �eld in Figure 14(a)
demonstrates the same pattern as in Reference [22]. Figure 14(b) shows that the results based
on coarse and �ne grids are virtually identical. In the previous numerical examples, no �uids
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Figure 13. Mesh for the spatially periodic �ow. In contrast to Figure 9, due to the spatial periodicity
it is more convenient to de�ne additional unknown velocity components on the right boundary and on

the top boundary. The a, b, c, d-type points are used in the same way as in Figure 9.
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Figure 14. Results for the spatially periodic �ow: (a) velocity vector �eld at Re=104; and (b) horizontal
velocity pro�le (on vertical midplane) on two di�erent grids.

penetrate through boundaries and wall e�ects reduce interpolation accuracy. This spatially
periodic �ow is an ideal example to demonstrate the order of accuracy, which is checked
at the point (0:5; 0:25). In Table II, let u1 represent the result based on the 8 × 8 grid and
likewise u2 and u3 represent those based on two other grids, then |u1 − u2|=|u2 − u3|=67:4,
which indicates a sixth-order accuracy. In the shear-driven cavity �ow, the moving boundary
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Table II. Order of accuracy study for spatially periodic �ow at Re=104 and at t=4:0.

Grid 8× 8 16× 16 32× 32

u at y=0:25 0.277020 0.298116 0.298429

is more in�uential on the core �ow and the method shows a fourth-order accuracy. In the
temporally periodic �ow, the stationary wall is less e�ective in in�uencing the core �ow and
the method possesses a �fth-order accuracy. Finally in the spatially periodic �ow, the lack
of boundaries eliminates the need of lower-order interpolations such as Equation (18);
as a result, the formal sixth-order accuracy is maintained.

5. CONCLUSIONS

In this paper we have presented the point/node-based compact �nite di�erence method on
staggered grid. The underpinning idea of a compact �nite di�erence method is to cancel lower-
order errors by treating spatial Taylor expansions implicitly. In the point/node-based compact
�nite di�erence method, all quantities appeared in a speci�c governing equation are de�ned
on the same selected nodes and interpolated by unknowns on staggered or collocated grid.
The governing equations are then imposed on these selected nodes. All relevant interpolations
as well as boundary treatments are presented. The system is solved using a fully explicit
second-order time scheme, where the pressure Poisson equation is solved by a pseudo-time
marching procedure. The implementation of the method is illustrated through application to
the incompressible Navier–Stokes �ow in a shear-driven cavity, a temporally periodic �ow,
and a spatially periodic �ow. The results demonstrate the success of the method, and error
study supports the high order of accuracy of the method. It is also demonstrated that wall
e�ects reduce the formal order of accuracy.

ACKNOWLEDGEMENTS

The support for this work was in part provided by Grant CTS-0237951 from the National Science
Foundation.

REFERENCES

1. Kopriva DA, Kolias JH. A conservative staggered-grid Chebyshev multidomain method for compressible �ows.
Journal of Computational Physics 1996; 125:244–261.

2. Yeung RW, Ananthakrishnan P. Oscillation of a �oating body in a viscous �uid. Journal of Engineering
Mathematics 1992; 26:211–230.

3. Yeung RW, Ananthakrishnan P. Viscosity and surface-tension e�ects on wave generation by a translating body.
Journal of Engineering Mathematics 1997; 32:257–280.

4. Orszag SA, Israeli M. Numerical simulation of viscous incompressible �ows. Annual Review of Fluid Mechanics
1974; 6:281–318.

5. Hirsh RS. Higher order accurate di�erence solutions of �uid mechanics problems by a compact di�erencing
technique. Journal of Computational Physics 1975; 19:90–109.

6. Lele SK. Compact �nite di�erence schemes with spectral-like resolution. Journal of Computational Physics
1992; 103:16–42.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:867–881



STAGGERED GRID FOR NAVIER–STOKES FLOWS 881

7. Adam Y. Highly accurate compact implicit methods and boundary conditions. Journal of Computational Physics
1977; 24:10–22.

8. Rubin SG, Khosla PK. Polynomial interpolation methods for viscous �ow calculations. Journal of Computational
Physics 1977; 24:217–244.

9. Gupta MM, Manohar RP, Stephenson JW. A single cell high order scheme for the convection-di�usion equation
with variable coe�cients. International Journal for Numerical Methods in Fluids 1984; 4:641–651.

10. Li M, Tang T, Fornberg B. A compact fourth-order �nite di�erence scheme for the steady incompressible
Navier–Stokes equations. International Journal for Numerical Methods in Fluids 1995; 20:1137–1151.

11. Gamet L, Ducros F, Nicoud F, Poinsot T. Compact �nite di�erence schemes on non-uniform meshes. Application
to direct numerical simulations of compressible �ows. International Journal for Numerical Methods in Fluids
1999; 29:159–191.

12. Zingg DW. Comparison of high-accuracy �nite-di�erence methods for linear wave propagation. SIAM Journal
on Scienti�c Computing 2000; 22(2):476–502.

13. Visbal MR, Gaitonde DV. On the use of higher-order �nite-di�erence schemes on curvilinear and deforming
meshes. Journal of Computational Physics 2002; 181:155–185.

14. Zhang J. Numerical simulation of 2D square driven cavity using fourth-order compact �nite di�erence schemes.
Computers and Mathematics with Applications 2003; 45:43–52.

15. Tian Z, Ge Y. A fourth-order compact �nite di�erence scheme for the steady stream function-vorticity
formulation of the Navier–Stokes/Boussinesq equations. International Journal for Numerical Methods in Fluids
2003; 41:495–518.

16. Sengupta TK, Ganeriwal G, De S. Analysis of central and upwind compact schemes. Journal of Computational
Physics 2003; 192:677–694.

17. Nagarajan S, Lele SK, Ferziger JH. A robust high-order compact method for large eddy simulation. Journal of
Computational Physics 2003; 191:392–419.

18. Piller M, Stalio E. Finite-volume compact schemes on staggered grids. Journal of Computational Physics 2004;
197:299–340.

19. Zhang KKQ, Minkowycz WJ, Mashayek F. Exact factorization technique for numerical simulations of
incompressible Navier–Stokes �ows. International Journal of Heat and Mass Transfer 2005, in press.

20. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible �ow using the Navier–Stokes equations and
a multigrid method. Journal of Computational Physics 1982; 48:387–411.

21. Johnstonm H, Liu JG. Finite di�erence schemes for incompressible �ow based on local pressure boundary
conditions. Journal of Computational Physics 2002; 180:120–154.

22. Chorin AJ. Numerical solution of the Navier–Stokes equations. Mathematics of Computation 1968; 22:745–762.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:867–881


